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Behavior of a Nonconformal Mixture via Computer 
Simulation 
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A binary 50% mixture of soft spheres is studied via nonequilibrium molecular 
dynamics, and the equilibrium and nonequilibrium radial distribution functions 
for a nonconformal mixture with a mass ratio of 10 and a size ratio of about 2 are 
examined. This model system is related to the real methane/decane mixture, and it 
is shown that apparently anomalous properties of this mixture, especially the 
viscosity, could perhaps be understood in terms of the local or ambient mole 
fraction. In addition, the postulates of the Van der Waals one fluid conformal 
solution theory are discussed, and a mixing rule for the mass is derived. 

KEY WORDS: conformal solution theory; local mole fraction; nonequilibrium 
molecular dynamics; radial distribution functions; soft spheres; Van der Waals one 
fluid theory. 

1. I N T R O D U C T I O N  

Few tools or techniques have contr ibuted more to fluid theory than computer  
simulation.  A model fluid can be constructed that  leads to an unambiguous  

examinat ion of fluid s tructure and an unambiguous  test of theory, the results 
of which can then s t imulate  and guide further  progress. Further ,  it is well 
known that  many  features of the real fluid can be represented quali tat ively by 
simple approximations:  an example is given in this paper by reporting 

�9 computer  s imulat ion results for a b inary  mixture  whose components  differ in 
size a n d / o r  mass. The results are of interest  in themselves, but  are also used 
to test a corresponding states procedure we have proposed previously to 
calculate the viscosity of mixtures. 
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The paper is organized as follows: first, the corresponding states proce- 
dure, which is based on the Van der Waals one fluid concept (VdW1), is 
reviewed briefly and the basic assumptions noted. It is pointed out that 
experience has shown that the properties of mixtures with molecules of 
substantially different size and mass are often reproduced poorly by this 
method and by others. For this reason, we next discuss the simulation of a 
mixture of this type, namely a 50/50 mixture of methane (C1) and decane 
(C10), by considering a mixture of soft spheres in which one species has 
approximately twice the radius and 10 times the mass of the other. Despite 
this obvious gross simplification, it is shown that the simulation can give 
insight into the real system by examining the radial distribution function in 
equilibrium and in nonequilibrium when the system is subjected to a steady 
shear. Specific results reported include a test of the Van der Waals theory and 
a calculation of the local number density, or mole fraction, in the simulated 
C1/C10-1ike mixture. 

2. CORRESPONDING STATES FOR VISCOSITY 

The basic postulate of the one fluid model is that the properties of a 
mixture at a pressure (p) [or density (p) ] ,  temperature (T),  and mole 
fraction x; (i = 1,n, where n is the number of components), can be equated to 
those of a hypothetical pure substance. For example [ 1 ], for the viscosity (r/), 
one has 

r/mix(P , T, Xi) = r / x ( P ,  T) (1) 

Then, using corresponding states, one writes 

r/x(jO, T ) =  r/o[O0, T~)] (~176 (~xll/2(Mxl 1/2 
 0"x/ tTol 

(2) 

where the subscript 0 refers to a reference substance, 0- and e are the 
characteristic length and energy parameter s of the pair intermolecular 
potential (4~), and M is the molecular weight. The value r/x can thus be 
calculated from Eq. (2) given values of no as a function of po and To; the prime 
indicates that r/o is to be evaluated at conditions equivalent to p and T: 

OS=O : T 0 =  T (3) 
\aol \Ex] 

Convenient mixing rules for a. and Ex are the one fluid Van der Waals rules, 
which are 
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e~fi3x = ~ x,xj %~j (4) 
0 

= fi3j ( s )  
ij 

The equations are standard and have been discussed by several authors. 
However, the derivation of Henderson and Leonard [2] does point out the 
specific assumptions of the VdW1 theory. The procedure is briefly as follows. 
The potential contribution to the energy of a pure fluid, Eo, is written in terms 
of the radial distribution function and the pair potential: 

Eo = 2rrNp f cb(r) g(r) r 2 dr (6) 

and for a mixture 

E~ = 27rNp )-" xixj f gij(r) r 2 dr (6a) 
q 

where g(r) is the radial distribution function dependent on the intermolecular 
separation, r; 0 is the number density, i.e., O = N / V  with N the number of 
particles and Vthe volume. If, as is assumed in Eqs. (1) and (2), all species in 
a mixture obey the same force law q5 = ef(r/~r), i.e., tha t f ( r / f i )  is a universal 
function of r scaled appropriately, and the radial distribution functions scale 
a s  

g l l ( / ' / f i l l )  = g 1 2 ( r / ~ r 1 2 )  = g 2 2 ( r / c r 2 2 ) . . .  (7) 

then Eq. (6a) can be written 

E~ = 2~rNp x, x j , , :~  f g(r*) ri j,2 dr a, 
q 

(8) 

where 4~* = ~b/E and r* = r/fi. One then compares Eq. (8) with Eq. (6) written 
in a similar reduced form and states that the mixture behaves as a hypotheti- 
cal pure fluid with parameters fix and ex defined by Eq. (4). 

2.1. Mixing Rule for the Mass 

Equation (2) requires a mixing rule for the mass, and such a rule follows 
quite easily if the scaling of the radial distribuiton in nonequilibrium is 
considered by an approach analogous to that of Henderson and Leonard 
above [3, 4]. 
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The  pressure tensor P in the fluid is given formally by [4, 5]: 

P = ~ .  me [vi - u ( r i ) ]  [vi - u ( r 3 ]  + 

where vi is the velocity of particle i, u(ri) is tile s t reaming velocity at  r~, ll~j = 
(rj -- r~), and rn~ is the mass  of  i. The  summat ion  is for all particles of all 
species in a mixture  with the masses assigned appropriately.  

The  potential  contr ibution P~ can be expressed by the equation of Irving 
and Kirkwood [6] in te rms of the radial distribution function in nonequi- 
l ibrium g(r;  3'); in our case, for a shear  or strain rate,  3'; thus 

1 1 d4~ 
p ,  = __ ~ p2 f r r .  r drr g(r;  3") dr  (10) 

In our work, we s imulate  Couet te  flow, for which the constitutive relation is 

P~y = - 2~7 ,~sy (11) 

where P~y is the symmet r ic  traceless contribution to P and 

o~ 1 [ d u J d y  + d u J d x ]  1 div u .  
~ x y = ~  - 3 

A comparison between Eqs. (10) and (11) will give an expression for the 
potential  contribution to the viscosity, n,, in te rms of the radial distribution 
function. A convenient but  incorrec t  next step is to follow H. S. Green  [7] and 
expand the function g(r; ~,s) in a Taylor  series about  ~,s. For a pure fluid, 
therefore,  one has then 

g(r;  ~,s) = go(r) + u(r) T : .~s + . . .  (12) 

where go(r) is the equil ibrium radial  distribution function, and u(r) is a scalar 
function of r with units of  time: T is a tensor given by 

1 
T = [r r - - r 2 I ] / r  2 (13) 

3 

where I is the unit tensor. 



Behavior o f  a Nonconformal  Mixture 5 

Substitution of Eq. (12) into Eq. (10) gives, via Eq. (11): 

2,~p~ f r3~rV(r) dr (14) 

and a similar derivation leads to the viscosity equation for a mixture: 

21r 2 &bO 
"rb = ~ P Zij XiX j f r 3 ~ r  vO(r) dr (15) 

It should be pointed out that the reason why the expansion (12) does not 
appear to be correct is that g is a nonanalytic function of y, so the quadratic 
and higher-order terms in ( t2)  diverge [8]. Nevertheless, Evans has derived 
Eq. (14), which involves only the term in v(r)  using a spherical harmonic 
expansion [9]. 

The Van der Waals idea is to assume that the terms v0of Eq. (15) scale 
or conform as does go(r) so that 

2re 2 r "3 dc~* v*(r*)  dr* ,o=g  Zx,x,4 dr* q 
(16) 

By comparing this equation with the corresponding expression for a pure 
substance one has a mixing rule, 

a 4 ~- - -~= ~_. x,xj~ 4 ~ (17) 
q 

A choice for the mass M o would be M o = 2 m i r n J ( m i  + mj). Rule (17) with 
Eqs. (7) and (8) form, therefore, a set for the VdW1 theory of viscosity. 

2.2. Generalization of the VdWI Theory 
The application of the VdW1 theory has been considerably broadened 

[1] by the introduction of shape factors 0 and ~b', which allows one to work 
with fluids that do not obey corresponding states, while keeping the format of 
VdW1 equations. The mixing rules are then redefined in terms of the ratios 

fii,o and h..o using that the critical temperature T c - e and the critical density 
pC ~ 0.-3: 

f .,o = ( T i l l  T~o) 0.,o " h.,o = (p~/  pi~, .) 4~,o (is) 

and 
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hx.o =~-~xixjhq,o 
q 

Z,o h~,o = ~ x ,xJq,o hq,o 
ij 

(19) 

/,4/3 "x,0/,4/3 ~ = ~ xix j  ,,,7.0 ~/j,0M,j (20) 
U 

where f and h for species i and for the cross interactions ( i j )  are to be 
evaluated with respect to values of a known or reference system, subscript 0: 
see Eq. (3). The shape factors 0 and 4/are  in principle functions of density 
and temperature to force species i to be conformal with the reference 0. 
However, it is usually preferable to consider equations for them in terms of a 
third parameter such as the Pitzer acentric factor and hence retain a 
predictive capability. 

The cross interactions of Eq. (20) are given by the combining rules 

fij,O = ~ij ( f ii ,of jj,O) 1/2 

h,;o = ~,; (1/2 ~ v 3 _  , , , , , o .  1/2 h)f3)  3 
(21) 

where ~q and ~q are parameters that can often be set to unity. 
The viscosity equation (2) in this extended VdW1 treatment becomes 

[11 

t M / M  ~1/2 h-2/3.r ~lx(P, T )  = ~1o [phx,o, Ti f f ,o]  , x /  oJ x,O ax,o (22) 

2.3. VdWi and the Soft Sphere 

A mixture of soft spheres will be discussed in Section 4, and for soft 
spheres the VdW1 expression becomes as follows. Consider a binary mixture 
of soft spheres with mass m and a m ,  respectively, in which all interactions 
follow the intermolecular potential law 

qS(r) = d / r  12 (23) 

In terms of the usual a and E parameters, Eq. (23) is 

q~(r) = e (or/r) '2 (23a) 

although it should be noted that the intermolecular interaction is character- 
ized by only the one parameter d. If the particles are designated 1 and 2, 
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respectively, the like and cross interactions can be written in terms of the 1 - 
1 interaction, d~l, and the potential parameters/3 and 6: 

q ~ l l  = dll/r12, q~12 = /3du/r 2, 022 = 6dn/r u (24) 

Note that these potentials ensure that the components of the mixture obey 
corresponding states, since 0 = ~f(r/a). 

Since the temperature and density cannot be distinquished in a soft 
sphere system, we introduce a state parameter X: 

X =  (2~)  (d/kT)' /4 (25) 

or, replacing d by e~2 as in Eq. (23a), 

X = p * / ~  T .1 /4  ( 2 5 a )  

where p* = (N/V)ff 3 and T* = Tk/e, with k as Boltzmann's constant. 
The mixing rules for the system are simple; Eqs. (4) and (5) become 

q 
(26) 

and Eq. (16) is 

dl/3 ~ x  ~ 1/3 r ~  x = xixjdq VMij 
q 

(27) 

In the special case of a binary 50/50 mixture, Eqs. (26) and (27) are 

,41/4 
dl/4 _ ~1._...~1 [ l  -[- 2/31/4 -}- ,,yl/4] 

x - 4 (28) 

and 

dff 3 ~ = ~ [1 + 2f l  1/3 -,/2a/(1 + a) + 6 '/3 4~] (29) 
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2.3.1. Viscosity 

The VdWl viscosity of a soft sphere mixture at state point X follows from 
Eq. (2): 

, Fq,,o 

where the reference viscosity rl0 is to be evaluated at state point g(dx/do) U4. 
Now, if the reference system is chosen to be the soft sphere interacting with 
potential ~b = dlJr  12, Eq. (30) becomes 

r/x(X) = 7/o [X(1 + 2/31/4 q_ ~1/4)] 
4 [o~] (31) 

where 

(I + 2fl 1/3 x/2c~/(1 + a) + 61/3 ,f~) 
[a] = 4 (1 + 2/3 I/4 + .~1/4)2 (32) 

3. RESULTS FOR HYDROCARBON MIXTURES 

Equation (22) has been used successfully to predict the viscosity of 
hydrocarbon mixtures [1, 10], and a comparison with viscosity data is 
indicated by two selected examples in Table I. The agreement shown is, 
however, only typical provided the components of the mixture are not 
substantially different in mass, size, or polarity. In particular, the results for a 
mixture of methane and decane were not always satisfactory. But the 
viscosity of this mixture behaves in an apparently peculiar manner at high 
densities, as can be seen by Fig. 1. Shown is a plot of the viscosity [ 11 ] at 444 
K at a constant reduced density (p+ = pip'x) of 2.3, where pCwas obtained via 
Eqs. (18)-(21). The viscosity is constant at the decane value for Xc~ < 0.9, and 
it is obvious by inspection that any corresponding states procedure would have 
great difficulty predicting it in terms of the mole fraction. The prediction of 
Eq. (22) is given by the curve. 

The results shown actually lead to this investigation because it was most 
probable that the basic assumptions of the VdW1 model were inadequate. 
Hence it was felt that a computer simulation of a model mixture which 
approximates that of methane/decane would be instructive. Accordingly, as a 
first step, a mixture of soft spheres was considered. As remarked in the 
introduction, while it is appreciated that a soft sphere is a substantial 



Table I. Viscosity of Mixtures at Saturation Compared With the VdW1 Equation (22) 

Viscosity (10 6 Pa �9 s) 

313 

Temp 
(K) xt Expt. Calc. 

368 

298 

Toluene (1)-n-octane a 
0.2634 470 464 
0.8282 485 507 
0.8880 498 511 
0.2634 255 273 
0.8282 266 301 
0.8880 270 310 

2 0 0 0  

n-Hexadecane (1)-benzene(2)-n-hexane b 

0.5315 
xz - 0.2836 1,497 1,477 

0.0757 
x 2 - 0.4724 492 487 

0.1221 
x2 - 0.5406 581 588 

aT. D. Ling and M. Van Winkle, Ind. Eng. Chem. 3;88 (1958). 
bE. L. Heric and J. G. Brewar, J. Chem. Eng. Data 14:55 (1969). 

6 
D. 1 5 0 0  

Fig. 1. Plot of the viscosity of methane- 
decane mixtures at T = 444 K at a constant 
reduced density of 2.3. Data from ref. [11]. 
This viscosity is constant until Xc~ > 0.9. The 
curve is the calculation from Eq. (22). 

1 0 0 0  

0 
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simplication of a real molecule, one would hope that the qualitative features 
of a real mixture could be assessed with the model, especially since the 
transport properties of a fluid are relatively insensitive to the choice of the 
intermolecular pair potential. 

4. COMPUTER SIMULATION 

Nonequilibrium molecular dynamics has been applied to a binary soft 
sphere mixture under constant Couette flow; that is, the system is subjected to 
a constant strain rate in the x - y plane. Details of the simulation technique 
have been reported in refs. [4] and [12]; see also ref. [13]. The essential 
feature of our nonequilibrium molecular dynamics is that the system is 
examined at equilibrium in the usual way but then is studied in a steady state 
after an external force, in this case a strain rate, % is imposed. Components of 
the pressure tensor are evaluated from Eq. (9), the potential energy is set to 
be pairwise additive, the temperature is evaluated from T = (1/3) 
( 2;; [v; - u(ri)] z ), and the viscosity can be extracted from Eq. (11), since ~y is 
given. 

We found it most convenient to work at constant density and tempera- 
ture: the system was therefore thermostated to compensate for the viscous 
heating. A discussion on the thermodynamics describing a system with these 
constraints is given in refs. [8] and [14]. 

The system consisted of 108 (N)  particles with species 1 labeled by an 
odd particle number and species 2 by an even particle number. Thus N~ = 
N2 = N /2  or x~ = x2 = 1/2. The particles interacted with the potentials of Eq. 
(24) truncated at 2.5a. The system was first characterized by setting a for the 
mass,/3 and 6 for the potentials, and was then studied at a state point X of Eq. 
(25). In this work, X was equated to/9* of Eq. (25a), so the temperature T* 
was fixed at 0.25. 

4.1. Radial Distribution Functions 

The radial distribution functions for the binary mixture were evaluated 
from the histogram 

X , 
(33) 

where ( N o),,,Ar, is the average number of particles in the shell between r* and 
Ar* of type i around particle j .  go(r*) is scaled as r* = r/trij. 

An attractive feature of the nonequilibrium simulation technique is that 
the scalar variable u(r) can be evaluated by a similar histogram: 
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8---~-~ ~ r*2 Ar* (X)  v(r*) ( rxry/ r2}'*'~'* (34) 

using that the tensor T of Eq. (12) simplifies to (rxrffr 2) for Couette flow. 
Since v(r*) scales with r* but also has units of time, the dimensionless form is 
defined by 

s t 1/2 -1 
.*(rij*) = v(r*) ~ I  ~u (35) 

v*(rij* ) = .(r*) (a /kT)  -'/z ( m / k T )  -1/2 (35a) 

or, alternately, by 

4.2. Properties in a Mixture 

Having g(r) and v(r) adds to the scope and flexibility to the treatment of 
a mixture. For example, the potential part of the pressure for a pure fluid is 
given by 

27t" po=To  f g ( r ) ~ r r ' d r  (36) 

and for a mixture 

where 

P~ = Z xixjp~(ij) (37) 
q 

d~b o 

Then with ~bi; defined and g(rij) calculated in the mixture, one can evaluate 
Eq. (37). Similarly, for the potential energy per particle (Eq. (6)], 

E~ = 27rp f g(r) ~r 2 dr (38) 

and 
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-E~ = ~ xixj -E~(ij) (39) 
6 

and for the viscosity from Eqs. (14) and (15), 

-~2~r 02 , ,  = ~ r 3 v(r) dr (14) 

and 

~ = ~ xixj ~ ( i j )  (40) 
q 

5. SIMULATION OF METHANE-DECANE 

Simulations were carried out with the soft sphere mixture setup to 
approximate the C1/C10 mixture, and the radial distribution functions in 
particular were obtained. Since V~c~/V~c~o ~ 1/6 and Mc~/Mc~o ~ I0 (with V c 
the critical volume), we set the potential parameter 6d of Eq. (24) to 
1296.0d~1 so that (dc~/dc~o) u4 = 6, and we set the mass parameter a to 10. 
Thus the simulation was run for a 50% mixture whose species had masses m 
and am, respectively, with 

(all = dl~/r ~2, 49~2 = d~l/r ~z, q~22 = 1296.0 d ~ / r  ~2 (41) 

The potential parameter/3 of Eq. (24) was set at 1 which, although obviously 
a further simplieation, is not too significant for model calculations, and one 
could make a separate study on the combining rules if necessary. 

Since results for a pure fluid at X = 0.6 are available [4], the mixture 
study was carried out at the state point X = 0.26667 obtained from Eq. (31) 
using the parameters of Eq. (41). All results are reported for the reduced 
strain rate of w* = w ( d / k T )  -u2 ( k T / m )  -u2 = 0.2. 

5.1. Radial Distribution Functions for a Pure Fluid 

Figures 2 and 3 show plots of g(r) and ~(r) for the pure fluid at X = 0.6 
[15] and at X = 0.26667, respectively, and show as expected that the more 
dense fluid has the more pronounced structure. 

5.2. Results for the Mixture  

The results for the simulated methane/decane mixture at X = 0.26667 
are displayed in Fig. 4, where the label 1-1 refers to the interaction between 
the species 1. It is clear from the plots that the larger species (2) dominates 
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g (r) 

I-1 

j ~  J 

l 

1-2 2-2 

I I 

v (r) 

1 - 1  

7 
I I 

1 2 
I 
3 0 

I I 
1 2 

I 
3 0 

2 - 2  

? 
I 

2 

Fig. 4. Upper set: equilibrium radial distribution for an a = 10, 6 - 1296.0 mixture 
at X = 0.2667; Lower set: plot of the nonequilibrium term u(r). 

the structure of the liquid, and also that  the distribution functions certainly do 
not conform, either with respect to each other or with respect to the X = 0.6 
values. 

The exaggerated effect of a mass difference is demonstrated by the plots 
in Fig. 5 [ 15] for v(r) corresponding to a mixture whose components are of  the 
same size (3 = 6 = 1) but with mass difference a = 100. The plots for g(r) 
would be the same as that  of  Fig. 1. 

One can easily calculate the contribution to the properties of the mixture 
made by each species via equations such as (36)- (40) ,  and in fact we have 
estimated p~,(ij), E~,(ij) and ~(ij)  for the 6 = 1296.0, a = 10 system by 
integrating the appropriate distribution function. Shown is the variation of 
these properties with intermolecular separation for the 1-1 and 2-2- contribu- 
tions in Fig. 6. The scales are in reduced units and are not important:  what  is 
of interest is that  the contributions have reached essentially their limiting 
(macroscopic) values at an intermolecular separation of  r ~ 1.8. 

5 .3 .  L o c a l  or  A m b i e n t  M o l e  F r a c t i o n  

To return to the behavior of  the real me thane /decane  mixture: we give a 
possible explanation of  the apparent ly peculiar behavior of the viscosity 
shown in Fig. 1 by observing the ambient  mole fraction. The concept of local 
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Fig. 6. Contributions of the viscosity (r/), 
energy (E) ,  and pressure (p)  as a function of 
separation for the 1-1 and 2-2 interactions in the 
binary mixture at X = 0.2667 with c~ = 10, 6 = 
1296.0. 

composition in a mixture is familiar, the idea being that in a mixture of 
diverse components, the local--or ambient--mole fraction may be different 
from the overall average. 

Consider the fraction x;j for the number of particles of type i around a 
central particle j normalized by all particles around j: 

n 6 
x~j (42) 

n~j + njj 

For the binary mixture with NI = N 2  ~ N/2: 

nij(r) = 4~-(X/2) f0 '  R2gij(R) dR (43) 

Given gij(r), therefore, the mole or (particle) fractions can be evaluated as a 
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1,o 

0.,5 

0 . 2 0  i I 1.0 2 .0  
r 

Fig. 7. The ambient mole fractions, Eqs. 
3.0 (42) and (43) for the a = 10, ~ = 1296.0 

mixture for X = 0.2667. 

function of separation, r, and Fig. 7 illustrates the variation of xH and x22 for 
the particular case of the soft sphere mixture of a = 10 and 6 = 1296.0. 
Although x~ = x2 = 0.5 overall, one sees that x22 ~ 0.85 and xii ~. 0.35 for r < 
2.0. Hence, by Fig. 7, the mixture is dominated by the 2-2 interactions. 

An appealing if simplistic argument is that for a real C1/C10 system, 
the ambient mole fraction is the key parameter since the properties of the 
system are determined by short range behavior. The mixture thus behaves as 
pure C10 until Xcl is close to unity. The behavior of the viscosity in Fig. 1 is 
consistent with this picture. 

6. VdWl THEORY A N D  THE S I M U L A T E D  MIXTURE 

Finally, we report how the VdW1 theory predicts the viscosity (and 
pressure) of the soft sphere mixture with 6 = 1296.0 and a = 10. The 
calculation uses Eq. (30) given from previous work [4] that the reference 

Table II. Comparison Between the Viscosity of a Soft Sphere Mixture at X = 0.26667 With 

fl = t and 6 = 1296.0 and c~ = 10, Calculated by the VdWl Equation (31) and Direct 
Simulation. The Hydrostatic Pressure is Included 

IIIIII I 

VdW 1 Simulation 

Viscosity 2.35 2.55 
Pressure 0.64 0.98 

I II IIII  I 
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viscosity rl0 = 1.24 a t  X(dx/do) 1/4 = 0.6. The  viscosity rix(X) is therefore  
es t imated  f rom Eq. (31) with X = 0.26667 by Eq. (28). Tab le  II  gives the  
result .  The  agreement  with the d i rec t ly  computed  results  is perhaps  surpris-  
ingly good, considering the behavior  of  the  d is t r ibut ion  functions shown in 

Figs. 3 and 4. 

7. C O N C L U S I O N S  

W e  have demons t r a t ed  how a compute r  s imula t ion  of a model  fluid, in 
our case a mix ture  of soft spheres,  can help one to under s t and  the behavior  of 
a real  mixture .  The  discussion was based on the appl ica t ion  of the  VdW1 
corresponding states  theory  to the viscosity of  a mix ture  of me thane  and 
decane,  and the compute r  s imula t ion  used the technique  of  nonequi l ibr ium 
molecular  dynamics .  This  technique  is powerful;  for example ,  we have been 
able  to ca lcula te  the proper t ies  of  a species in a mix ture  in equi l ibr ium and in 
nonequi l ibr ium,  including the local or ambien t  mole  fract ion.  W e  have been 
able  to show quant i ta t ive ly  how the ambien t  mole  f ract ion differs from the 
overall  or macroscopic  value.  
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